Photoinduced (ultra fast) electronic and nuclear dynamics in molecules

Françoise Remacle
Theoretical physical Chemistry
University of Liège

Photoinduced : Excitation by a short strong atto to few fs pulses

sub to a few femtoseconds,
strong, few cycle, ultrashort,
optical pulses
$\mathbf{E}(t)=\mathbf{E} f(t) \cos (\omega t+\phi)$
$\left\{\begin{array}{l}f(t) \text { is the envelope } \\ \omega \text { is the carrier frequency } \\ \mathbf{E} \text { is the electric field } \\ \phi \text { is the CEP phase }\end{array}\right.$

Coherent electronic wave packet is built by the excitation

Polyatomic molecules : Dense manifold of electronic (vibronic) states
Multiphoton processes are possible
Photoexcitation of the neutral electronic states
Photoionization to the states of the cation

Attopulse : Investigate a purely electronic time scale before the nuclei have time to significantly respond

Ultrafast electronic excitation

followed by ultrafast electronic reorganization before the nuclei have time to significantly move

Attopulses can induce ultrafast (sudden) ionization
For modular systems : Ultrafast charge migration in cationic states before significant rearrangement of the nuclei

Pioneered by Weinkauf and Schlag before the engineering of attopulses Site selective dissociation of peptide ions following localized ionization
(Schlag and Weinkauf : J. Phys. Chem. 100, 18567 (1996))

Charge migration following sudden ionization in modular systems

Remacle, F.; Levine, R. D.; Ratner, M. A., Charge Directed Reactivity: A Simple Electronic Model Exhibiting Site Selectivity for the Dissociation of Ions. Chem. Phys. Lett. 1998, 285, 25-33.
Remacle, F.; Levine, R. D., Charge Migration and Control of Site Selective Reactivity: The Role of Covalent and Ionic States. J. Chem. Phys. 1999, 110, 5089-5099. Remacle, F.; Levine, R. D.; Schlag, E. W.; Weinkauf, R., Electronic Control of Site Selective Reactivity: A Model Combining Charge Migration and Dissociation. J. Phys. Chem. A 1999, 103, 10149-10158.

Cederbaum, L. S.; Zobeley, J., Ultrafast Charge Migration by Electron Correlation. Chem. Phys. Lett. 1999, 307, 205-210.
Lünnemann, S.; Kuleff, A. I.; Cederbaum, L. S., Ultrafast Charge Migration in 2-Phenylethyl-N,N-Dimethylamine. Chemical Physics Letters 2008, 450, 232-235. Hennig, H.; Breidbach, J.; Cederbaum, L. S., Electron Correlation as the Driving Force for Charge Transfer: Charge Migration Following Ionization in N-Methyl Acetamide. J. Phys. Chem. A 2005, 109, 409-414.

Charge migration following sudden ionization in modular systems

A non stationary electronic state of the cation is built at the step of sudden ionization, that coherently beats in time on a few fs time scale

sudden ionization of the HOMO of Trp

An electronic time scale for chemistry
F. Remacle and R. D. Levine, Proc. Natl. Acad. Sci. USA 103, 6793 (2006)

Pump-probe attosecond experiments give access to this very fast electronic time scale

Experimental probing of charge migration in polyatomic molecules Atto second pump and probe is not yet easily available Indirect probing using a combination of XUV atto pulses and NIR fs ones, detecting oscillations in fragment yield with mass spectrometry

Calegari et al Science 2014 : cation of phenylalanine attosecond pump (XUV 300 as)- second ionization 4fs VIS-NIR oscillations in the doubly charge fragments.

Niedel et al, PRL 2013 (NIR pump and ATP XUV probe), oscillations in the fragment yield that follow the fs oscillations of the NIR electric field.

See also recent review, Martin et al Chem Rev 2017.

Direct probing of few fs purely electronic non equilibrium dynamics using a single pulse for pumping and probing

- angularly resolved photoelectron spectra of C_{60} by a few fs strong IR pulse monitored as a function of the CEP of the pulse that acts as a clock.
- HHG spectra of iodoacetylene as a function of the polarization and of the wavelength of the IR pulse.

Joint theory-experimental studies

Partitioning technique

Field free electronic states
Neutral $\Psi_{I}^{\text {Neut }}$ and cation $\Psi_{K}^{\text {Cat }}$

1. small to medium molecules

Complete active space average
(CAS-SCF)
2. medium to large molecules Linear response TD-DFT (possibility to compute a large number of states)
$\mathbf{P}=\sum_{K} \sum_{\mathbf{k}_{1}}\left|\Psi_{K}^{C a t}, \chi_{\mathbf{k}_{1}}^{\perp}\right\rangle\left\langle\Psi_{K}^{C a t}, \chi_{\mathbf{k}_{1}}^{\perp}\right|$

- $\chi_{\mathbf{k}_{1}}^{\perp}$: plane waves orthogonalized to the MO's of the neutral
- antisymmetrized wave functions
- Discretization of the continuum in energy and solid angle.

Excitation and ionization dynamics

Partitioned time dependent Schrödinger equation

$i\binom{d \mathbf{Q} \Psi(t) / d t}{d \mathbf{P} \Psi(t) / d t}=\left(\begin{array}{ll}\mathbf{Q} H(t) \mathbf{Q} & \mathbf{Q} H(t) \mathbf{P} \\ \mathbf{P} H(t) \mathbf{Q} & \mathbf{P} H(t) \mathbf{P}\end{array}\right)\binom{\mathbf{Q} \Psi(t)}{\mathbf{P} \Psi(t)}$
Time-dependent wavefunction

$$
|\Psi(t)\rangle=c_{I}^{\text {Neut }}(t)\left|\Psi_{I}^{\text {Neut }}\right\rangle+c_{K, \mathbf{k}_{1}}^{\text {Cat }}(t)\left|\Psi_{K}^{\text {Cat }}, \chi_{\mathbf{k}_{1}}^{\perp}\right\rangle
$$

Photoexcitation and photoionization dynamics

Pump and probe pulses

$$
\mathbf{E}(t)=-\sum_{i=1}^{2} \mathbf{E}_{i} f_{0, i} e^{-(t-t)^{2} / \sigma_{i}^{2}}\left[\cos \left(\omega_{i} t\right)-\frac{2\left(t-t_{i}\right) \sin \left(\omega_{i} t\right)}{\omega_{i} \sigma_{i}^{2}}\right]
$$

- Dynamics in the bound states $\mathbf{Q} H(t) \mathbf{Q}$

$$
\begin{aligned}
& H(t)=H_{e l e}^{0}(\mathbf{r})-\boldsymbol{\mu} \cdot \mathbf{E}(t) \\
& \left\langle\Psi_{I}^{\text {Neut }}\right| H(t)\left|\Psi_{J}^{\text {Neut }}\right\rangle=\delta_{I, J} E_{I}^{\text {Neut }}-\mathbf{E}(t) \boldsymbol{\mu}_{I-J}
\end{aligned}
$$

- Dynamics in the ionized states : $\mathbf{P H}(t) \mathbf{P}$

$$
H(t) \approx\left(H_{\text {ele }}^{C a t}-\mu^{C a t} \cdot \mathbf{E}(t)\right)-\left(\frac{1}{2} \mathbf{p}_{1}^{2}-\mathbf{E}(t) \mathbf{r}\right)
$$

$$
\mathbf{P} H(t) \mathbf{P}=\mathbf{P}\left(H_{e l e}^{o c a t}-\boldsymbol{\mu}^{c^{c t}} \cdot \mathbf{E}(t)\right) \mathbf{P}-\mathbf{P}\left(\frac{1}{2} \mathbf{p}_{1}^{2}-\mathbf{E}(t) \mathbf{r}\right) \mathbf{P}
$$

Basis of plane waves for the ionized electron

- Ionization dynamics : PH(t) \mathbf{Q} and $\mathbf{Q} H(t) \mathbf{P}$
$\left\langle\Psi_{I}^{\text {Neut }}\right| H(t)\left|\Psi_{K}^{\text {Cat }}, \chi_{\mathbf{k}_{1}}^{\perp}\right\rangle=\mathbf{E}(t)\left\langle\phi_{I-K}^{D \text { sson }}\right| \mathbf{r}\left|\chi_{\mathbf{k}_{1}}^{\perp}\right\rangle$

$$
\phi_{I K}^{D y s o n}=\sqrt{n} \int d \mathbf{r}_{2} \ldots d \mathbf{r}_{n} \Psi_{I}^{\text {Neut }}{ }^{*}\left(\mathbf{r}_{1}, \ldots \mathbf{r}_{n}\right) \Psi_{K}^{C a t}\left(\mathbf{r}_{2}, \ldots \mathbf{r}_{n}\right)
$$

Coherent motion of the electronic density in LiH induced by a polarized UV short pump pulse

$$
\mu_{z}(t)=\langle\Psi(t)| z|\Psi(t)\rangle
$$

polarization along z

Time (fs)
polarization in (x, z)
Time (fs)
b)

$$
\omega=0.133 \mathrm{au},|\mathrm{E}|=0.025 \mathrm{au}\left(210^{13} \mathrm{~W} / \mathrm{cm}^{2}\right), \sigma=0.68 \mathrm{fs}
$$

F. Remacle, M. Nest, R.D. Levine, Phys. Rev. Lett., 99 (2007) TD-CAS $(4,5)_{1}$

Probing the electronic dynamics in the iodoacetylene cation using HHG

Kraus, P. M., B. Mignolet, D. Baykusheva, A. Rupenyan, L. Horný, E. F. Penka, G. Grassi, O. I. Tolstikhin, J.
Schneider, F. Jensen, L. B. Madsen, A. D. Bandrauk, F. Remacle and H. J. Wörner (2015). "Measurement and laser control of attosecond charge migration in ionized iodoacetylene." Science 350(6262): 790-795.

Probing ultrafast electronic dynamics in C_{60}
by varying the CEP phase of a short 4fs 720 nm IR pulse Li et al, PRL 2015, 114, 123004
Linear polarization ($\mathrm{CEP}=0$) \quad Circular polarization ($\mathrm{CEP}=0$)

Experiments MPQ
Matthias Kling Hui Li

TD-DFT :
CAM-B3LYP/ 6-31(+)G(d)
$\mathrm{Bq}(631(6+) \mathrm{G}(\mathrm{d}))$
electronic dynamics : band of 400 states below the IP.
B. Mignolet et al, CPC, 14, 3332 (2013)

See also J. Phys. Chem. Lett. 2016, 7, 4677-4682 for the role of SAMO states in SFI of C C_{60} and Scientific Reports 2017, 7, 121 for a study of the photoionization of $\mathrm{HoN} 3 @ \mathrm{C}_{80}$.

Probing ultrafast electronic dynamics in C_{60}

Experiments MPQ
Matthias Kling Hui Li

Electron ionized from the top

- Accumulation of density
- Depletion of density Hi, Mignolet et al, PRL 2015, 114, 123004

$$
\text { CEP }=\pi
$$

Electron ionized
from the top

- Accumulation of density
Depletion of density
by varying the CEP phase of a short 4fs 720 nm IR pulse

Photoinduced charge migration and charge transfer in small functionalized gold clusters

$$
\begin{gathered}
\mathrm{Au}_{11}\left(\mathrm{PH}_{3}\right)_{7} \mathrm{Cl}_{2} \text { bipy } \\
\text { "Au11 short" }
\end{gathered}
$$

$$
\begin{gathered}
f_{0}=0.005 \text { a.u. }\left(8.75 \mathrm{~W} / \mathrm{cm}^{2}\right) \\
\sigma=2.8 \mathrm{fs} \\
\phi=0 \\
\omega_{\mathrm{Au}_{11}}=275 \mathrm{~nm}
\end{gathered}
$$

After the pulse
During excitation

coherent
charge migration
$\mathrm{QM} / \mathrm{MM}$ Equilibrium geometry for the full ligand shell + chromophore : $\mathrm{Au}_{11}\left(\mathrm{Pph}_{3}\right)_{7} \mathrm{Cl}_{2}$ bipy and $\mathrm{Au}_{20}(\mathrm{SPh}-t \text {-but })_{16}$ bipy.
V. Schwanen, F. Remacle Nanoletters, 2017, Nano Lett 17: 5672-5681

TD-DFT UV-Vis absorption spectra

optically active - local on gold
CT bipy to gold

optically active local $\pi-\pi^{*}$ bipy
CT bipy to gold

higher intensity of first band (local excitation of SAMO)
TD-DFT CAM-B3LYP tuned with $80 \% \mathrm{HF}$ exchange
$\mathrm{Au}: \operatorname{LANL2DZ}, \mathrm{C}, \mathrm{O}, \mathrm{P}, \mathrm{Cl}, \mathrm{H}: 6-31 \mathrm{G}(\mathrm{d})$

Charge transfer and charge migration

Charge migration in small functionalized gold clusters

Au_{11} CAS averaged $(8,14)$ for 30 ES

$\mathrm{Au}: \operatorname{LANL} 2 \mathrm{DZ}, \mathrm{C}, \mathrm{O}, \mathrm{P}, \mathrm{Cl}, \mathrm{H}: 6-31 \mathrm{G}(\mathrm{d})$
V. Schwanen, F. Remacle 2017, Nano Lett 17: 5672-5681

$\mathrm{Au}_{11}\left(\mathrm{PH}_{3}\right)_{7} \mathrm{Cl}_{2}$ bipy

During excitation

After the pulse

charge migration

Charge migration in PENNA

Three charge states are involved : the neutral, cation and dication

TDDFT : 6-311++ G(d,p) with wB97xD

$$
|\Psi(t)\rangle=\sum_{I} c_{I}^{\text {Neut }}(t)\left|\Psi_{I}^{\text {Neut }}\right\rangle+\sum_{K} \sum_{\mathbf{k}_{1}} c_{K, \mathbf{k}_{1}}^{C a t}(t)\left|\Psi_{K}^{\text {cat }}, \varepsilon_{\mathbf{k}_{1}}^{\perp}\right\rangle+\sum_{L} \sum_{\mathbf{k}_{1}} \sum_{\mathbf{k}_{2}} c_{L, \mathbf{k}_{1}, \mathbf{k}_{\mathbf{2}}}^{\text {Dicat }}(t)\left|\Psi_{L}^{\text {Dicat }}, \varepsilon_{\mathbf{k}_{1}}^{\perp}, \varepsilon_{\mathbf{k}_{2}}^{\perp}\right\rangle
$$

PENNA (surface hopping study in the cation) : S. Sun et al, 2017, 121, 1442-1447.

IR pump-XUV probe scheme in PENNA

```
pump : |E| = 0.02 au
polarized along z
probe :: |E| = 0.005 au
polarized along z, }\omega=13.3\textrm{eV
```

Amine
population in the states of the cation

cation

Mignolet, B.; Levine, R. D.; Remacle, F., J. Phys. B 2014, 47, 124011.

IR pump-XUV probe scheme

$\rho(t)-\rho\left(t_{0}\right)-$ Accumulation of density

Asymmetry ionization parameter

$$
A(\varepsilon, \tau)=\frac{Y_{-x}(\varepsilon, \tau)-Y_{+x}(\varepsilon, \tau)}{Y_{-x}(\varepsilon, \tau)+Y_{+x}(\varepsilon, \tau)}
$$

$\mu_{x}=-0.1$ a.u.

$$
\mu_{x}=+0.2 \text { a.u. }
$$

Hole amine

$t=13.0 \mathrm{fs}$

Hole phenyl

$t=16.1 \mathrm{f}$
c)

Mignolet, B.; Levine, R. D.; Remacle, F., J. Phys. B 2014, 47, 124011.

An electronic time scale for chemistry?
 Is there a Post Born-Oppenheimer era?

Explore the regime of purely electronic dynamics before the onset of the nuclear motion

Long term :
Can one use ultrafast excitation of electrons out of equilibrium to drive the motion of the nuclei to specific products?

An electronic time scale for chemistry?

Chemical reactions imply a change in the configuration of the nuclei. Therefore the time scale of chemistry is the time for nuclear motion.

- Born-Oppenheimer separation: The light electrons instantaneously adjust to the position of the nuclei.
- Changes in electronic state are induced by motion of the nuclei.
F. Remacle and R. D. Levine, Proc. Natl. Acad. Sci. USA 103, 6793 (2006)

Attochemistry is qualitatively different

Photoexcitation Photoionization
non equilibrium electronic density

Onset of nuclear motion

Several time scales and several electronic states are involved - Time scale of the electronic motion, atto to few femto seconds

- Dipole coupling to strong fields for all electronic states
- Time scale for the electron-nuclei motion, up to ps
- Non adiabatic coupling induced by nuclear motion

Fully quantal electron-nuclear dynamics

by the time-dependent nuclear Schrodinger equation on a grid

Challenges

- The pulses are short and therefore broad in energy, resulting in the coherent excitation of several electronic states coupled by transient dipoles, non adiabatic couplings (NAC), and photoionisation.
- Several nuclear degrees of freedom are involved, multidimensional grids.

Methodological developments

- Implement a finite difference algorithm for computing momentum and kinetic energy, in several nuclear dimensions.
S. A. Jayantha, K. G. Komarova, S. van den Wildenberg, F. Remacle and R. D. Levine, in Attosecond Molecular Dynamics, eds. M. J. J. Vrakking and F. Lepine, Royal Society of Chemistry, Cambridge, 2018, vol. 13, pp. 308-347.
- Efficient methodology for computing the photoionization matrix elements for each set of nuclear coordinates.
S. van den Wildenberg, B. Mignolet, R. D. Levine, F. Remacle, JCP 2019 submitted.

Photoionization is included in the TDSE using the partitioning technique

Two orthogonal subspaces $\mathbf{1}=\mathbf{Q}+\mathbf{P}$
$\mathbf{Q}=\sum_{i, g}^{N_{\text {nam }} N_{g}}\left|\Psi_{i}^{\text {neut }}(\mathbf{r} ; \mathbf{R}) \theta\left(\mathbf{R}_{g}\right)\right\rangle\left\langle\Psi_{i}^{\text {neut }}(\mathbf{r} ; \mathbf{R}) \theta\left(\mathbf{R}_{g}\right)\right| \quad$ Neutral bound subspace
$\mathbf{P}=\sum_{j, g, k}^{N_{\text {cat }} N_{k}}\left|\Psi_{j}^{\text {cat }}\left(\mathbf{r} ; R_{g}\right) \theta\left(R_{g}\right) \phi_{\mathbf{k}}^{\text {Lelec }}(\mathbf{r})\right\rangle\left\langle\Psi_{j}^{\text {cat }}\left(\mathbf{r} ; R_{g}\right) \theta\left(R_{g}\right) \phi_{\mathbf{k}}^{\text {Lelec }}(\mathbf{r})\right|$ Continuum subspace
$\left\{\frac{d c_{i g}^{\text {neut }}(t)}{d t}=\sum_{i^{\prime} g^{\prime}}^{N_{\text {nam }} N_{g}} H_{i g, g^{\prime}}(t) c_{i g^{\prime}}^{\text {neut }}(t)+\sum_{j^{\prime} g^{\prime} \mathrm{k}^{\prime}}^{N_{\text {cat }} N_{k}, N_{g}} H_{i g, j^{\prime} g^{\prime} \mathrm{k}^{\prime}}(t) c_{j^{\prime} g^{\prime} \mathbf{k}^{\prime}}^{\text {cat }}(t)\right.$
$\frac{d c_{j g k}^{c a t}}{d t}(t) \sum_{i g^{\prime}}^{N_{\text {name }}, N_{g}} H_{j g k, l^{\prime} g^{\prime}}(t) c_{i^{\prime} g^{\prime}}^{n^{\text {neut }}}(t)+\sum_{j^{\prime} g^{\prime} \mathbf{k}^{\prime}}^{N_{\text {cuat }} N_{k}, N_{g}} H_{j g k, j g^{\prime} \mathbf{k}^{\prime}}(t) c_{j g^{\prime} \mathbf{k}^{\prime}}^{\text {cat }}(t)$

Total nuclear wave function
$\Phi\left(R_{g}, t\right)=\sum_{i g}^{N_{\text {naut }}, N_{g}} c_{i g}^{\text {neut }}(t) \theta\left(R_{g}\right)+\sum_{j g \mathbf{k}}^{N_{\text {cal }}, N_{k}, N_{g}} c_{j g \mathbf{k}}^{\text {cat }}(t) \theta\left(R_{g}\right)$

Matrix elements

Bound subspace

$$
\begin{aligned}
& H_{i g, j s^{\prime}}(R, t)=\left(-\frac{\hbar^{2}}{2 \mu} \nabla_{R}^{2}\right)_{g, g^{\prime}} \delta_{i j}+V_{i g, j g^{\prime}}(R) \delta_{i j} \delta_{g s^{\prime}} \\
& -\mathbf{E}(t)\left(\mu_{i, j, j j^{\prime}}^{\text {ele }}(R)+\mu_{g g^{\prime}}^{m e l}(R) \delta_{i j}\right) \delta_{g g^{\prime}} \quad \begin{array}{l}
\text { Photoexcitation } \\
+ \text { AC Stark shift }
\end{array} \\
& -\frac{\hbar^{2}}{2 \mu_{\mathrm{LiH}}}\left(2 \tau_{i j}\left(R_{g}\right)\left(\nabla_{R}\right)_{g s^{+}}+\sum_{l} \tau_{i j}(R) \tau_{i j}(R) \delta_{g g^{\prime}}+g_{i j}(R) \delta_{g s^{\prime}}\right)
\end{aligned}
$$

Continuum $\hat{H}=\hat{T}_{\text {med }}+\hat{H}_{\text {cat }}^{\text {cea }}+-\frac{1}{2} \hat{\nabla}_{l}^{2}-\mathbf{E}(t) \cdot \mathbf{r}_{i}$ AC 'Stark' shift
Photoionization matrix elements

$$
\left.H_{i g, j g^{\prime} \mathbf{k}}=-\left.\mathbf{E}(t)\left\langle\phi_{i j^{\prime}}^{D_{j s} o n}\left(\mathbf{r} ; R_{g^{\prime}}\right)\right| \mathbf{r}\right|_{\mathbf{k}} ^{\text {Lelec }}\right\rangle \delta_{g^{\prime} g}
$$

$\left|\phi_{\mathbf{k}}^{\perp \text { Lelec }}\right\rangle$ orthogonalized plane waves

$$
\phi^{\text {Dyson }}(\mathbf{r})=\left\langle\Phi_{\text {cat }} \mid \Phi_{\text {neut }}\right\rangle=\sum_{i} d_{i} \phi_{i}^{M O}(\mathbf{r}) \quad \phi_{i}^{M O}(\mathbf{r})=\sum_{j} c_{j i} \chi_{j}^{A O}(\mathbf{r})
$$

Control of fragmentation yields in LiH

 through the carrier envelope phase including photoionization

Dipole

256 grid points per electronic state 28672 discretized states of the continuum per grid points $=7.310^{6}$ coefficients

NAC
S. van den Wildenberg, B. Mignolet, R. D. Levine, F. Remacle, 2019, JCP submitted
$\operatorname{SA} 18-\operatorname{CASSCF}(4,20) / 6-311++G(3 \mathrm{df}, 3 \mathrm{dp})+\mathrm{S}$ and P Rydberg, SA4-CAS for the cation ${ }^{29}$

CEP control of the populations at the end of the pulse

	CEP=0	
$\mathrm{t}=$ 15 fs	Nuc mot	Req
GS	0.635	0.687
\sum_{1}	0.034	0.024
\sum_{2}	0.007	0.011
\sum_{3}	0.020	0.011
\sum_{4}	0.023	0.005
\sum_{5}	0.001	0.009
cat	0.259	0.214

	CEP $=\pi$	
GS	0.608	0.665
\sum_{1}	0.043	0.065
\sum_{2}	0.083	0.043
\sum_{3}	0.004	0.023
\sum_{4}	0.004	0.026
\sum_{5}	0.008	0.003
cat	0.219	0.17

Pulse parameters : $\omega=0.063$ au ($1.17 \mathrm{eV}, 720 \mathrm{~nm}$) $\left|\mathrm{E}_{\mathrm{z}}\right|=0.01 \mathrm{au}\left(110^{13} \mathrm{~W} / \mathrm{cm}^{2}\right)$, FWHM $=3.5 \mathrm{fs}$

Correlation between the dipole moments of the neutral and that of the photoelectron during the pulse

Correlation of the localization in space and in time of the densities of the neutral and the photoelectron during the pulse

CEP control is maintained

 when the vibronic WP goes through NAC regions
$t=200 \mathrm{fs} \quad \Sigma_{1} \simeq \Sigma_{4}>\Sigma_{3}>\Sigma_{2}$

$$
0.0340 .0320 .011 \quad 0.0062
$$

S. van den Wildenberg, B. Mignolet, R. D. Levine, F. Remacle, JCP 2019 submitted.

See also A. Nikodem, R. D. Levine and F. Remacle, Phys. Rev. A, 2017, 95, 053404.

Oscillations of the time-dependent dipole reflect the CEP

CEP is imprinted on the phase of the coherence in space and in time in spite of photoionization and strong NAC coupling

$$
2 \operatorname{Re}\left[c_{\Sigma 2, g}^{*}(t) c_{\Sigma 3, g}(t)\right]
$$

- CEP control: WP's on Σ_{2} and Σ_{3} travel and delocalize differently
- First NAC : the $\Sigma_{2}-\Sigma_{3}$ coherences are out of phase for $\mathrm{CEP}=0$ and $\mathrm{CEP}=\pi$
- WP's travel faster for CEP = 0
- Before the second NAC region : two branches
- Lower branch : $\Sigma_{2}-\Sigma_{3}$ coherences remain out of phase
- Upper branch : in phase

Electronic coherence and populations through the first NAC region CEP $=\pi$

Period of $6.5-8$ fs going through the NAC region

Isocontours of the the non equilibrium electronic density, $\rho_{\text {elec }}(\mathbf{r}, t ; R)$ through the first NAC region

Probing the $\Sigma_{2}-\Sigma_{3}$ coherence though the NAC region using MFPAD
Work in progress

Electronic coherence in HCN

Q 2D quantum dynamics in the internal coordinates R and θ on the GS and the first excited state

$$
\hat{H}=-\frac{\hbar^{2}}{2 \mu_{\mathrm{H}}} \frac{\partial^{2}}{\partial R^{2}}-\frac{1}{2}\left(\frac{1}{\mu_{\mathrm{H}} R^{2}}+\frac{1}{\mu_{\mathrm{CN}} R_{\mathrm{CN}}^{2}}\right) \frac{\partial^{2}}{\partial \theta^{2}}-\vec{E}(t) \cdot \hat{\mu}(R, \theta)+E_{n}^{e l}(R, \theta)
$$

$\mathrm{D}^{\text {calc }} 0=42937 \mathrm{~cm}^{-1}$
$\mathrm{D}^{\exp }{ }_{0}=43740 \mathrm{~cm}^{-1}$
Stephan van den Wildenberg, 2017

Dynamics

Excited states between 8.5 and 10 eV

$\lambda=151 \mathrm{~nm}(8.16 \mathrm{eV})$
0.5 eV below the first excited state $|\mathrm{E}|=0.025 \mathrm{au}, \sigma=2.5 \mathrm{fs}$

Polarized perpendicularly to the molecular plane

For $\theta \neq 0, \mathrm{~A}^{\prime}$ and $\mathrm{A}^{\prime \prime}$ are coupled by the dipole interaction

During the pulse, we need to run the dynamics on 6 excited states
S. van den Wildenberg, B. Mignolet, R. D. Levine, FR PCCP, 9, 19837-19846 (2017).

Coherent motion in 2D on two electronic states

Observation of coherence between the GS and 1A"
Transient absorption spectra

Quantum dynamics of the fast photoisomerization of norbornadiene $\mathrm{C}_{7} \mathrm{H}_{8}$
$1.32 \AA$

norbornadiene

quadricyclane

Reduced dimensionality in three generalized coordinates $(\theta, \gamma, \varphi)$
$\mathrm{HC}_{-} \mathrm{CH}_{2}$ - CH bridge is frozen

Dr. Alessio Valentini, ULiège, to be published

3D potentials

Electronic coherence at the vicinity of the CI

Nuclear wavepacket on S0 and S1

Vibronic $\mathrm{S}_{0} / \mathrm{S}_{1}$ Coherence

Conclusions and perspectives

- An electronic time scale before the onset of nuclear motion can be controlled and probed using attopulses.
- Dynamical simulations of the electron-nuclei dynamics in LiH show that one can implement a control of product yields tuning the pulse parameters (CEP, duration, field strength) in the presence of photoionization during the pulse and strong NAC coupling after the pulse.
- Dynamical simulations of electron-nuclei dynamics in Rydberg and valence states of N_{2} show that electronic coherences govern a significant isotope effect.
- Electronic coherences created by the pulse are 'long lived'. They are modulated by nuclear motion and the NAC (in $\mathrm{LiH}, \mathrm{N}_{2}, \mathrm{HCN}$ and in norbornadiene).
Future work :
Implement the pump-probe scheme for 2 nuclear coordinates (HCN). Investigate systematically the photoisomerization of norbornadiene. Include Coulomb interactions in the photoionization description.

Thank you

Thanks to my co-workers

Dr Benoît Mignolet Dr. Alessio Valentini
Funding

Raphael D. Levine

Dr. Ksenia Komarova

Office of Science

Stephan van den Wildenberg

